Strong maximum principle for mean curvature operators on subRiemannian manifolds

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Remarks on the Strong Maximum Principle for Nonlocal Operators

In this note, we study the existence of a strong maximum principle for the nonlocal operator

متن کامل

Generalized Ricci Curvature Bounds for Three Dimensional Contact Subriemannian Manifolds

Measure contraction property is one of the possible generalizations of Ricci curvature bound to more general metric measure spaces. In this paper, we discover sufficient conditions for a three dimensional contact subriemannian manifold to satisfy this property.

متن کامل

A Maximum Principle for Positive Elliptic Pseudo-differential Operators on Closed Riemannian Manifolds

In this note we establish the positivity of Green’s functions for a class of elliptic differential operators on closed, Riemannian manifolds

متن کامل

The Strong Maximum Principle on Infinite Networks

We study the strong maximum principle for the heat equation associated with the Dirichlet form on an infinite network. We prove that the strong maximum principle is equivalent to the underlying graph being connected after deletion of the nodes with infinite degree. Using this result, we prove that the multiplicity of the eigenvalue 0 of a generalization of the Laplace matrix equals the number o...

متن کامل

On Stretch curvature of Finsler manifolds

In this paper, Finsler metrics with relatively non-negative (resp. non-positive), isotropic and constant stretch curvature are studied.  In particular, it is showed that every compact Finsler manifold with relatively non-positive (resp. non-negative) stretch curvature is a Landsberg metric. Also, it is proved that every  (α,β)-metric of non-zero constant flag curvature and non-zero relatively i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Annalen

سال: 2018

ISSN: 0025-5831,1432-1807

DOI: 10.1007/s00208-018-1700-1